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Abstract Eliashberg equations with a pair coupling potential constructed from screened 
fermion-fermion interactions arising h m  the strong-correlation energy U are solved to obtain 
the superconducting gap, the quasipzrticle density of s l a t s  in the superconducting state, and 
the tansition temperamre as a function of the band parameters in smongly correlated electron 
mateials. This analysis allows us to establish the conditions of the electronic structure for 
obtaining coupling and superconductivity in lhese materials. 

In the last few years, a new current of interest has risen in solving the Eliashberg equations in 
strongly correlated systems considering coupling potentials arising from screened fermion- 
fermion interactions [ 1-71, This is, perhaps, due to the fact that theorists are consolidating 
the idea that the heavy-fermion systems and some high-T, superconductors are strongly 
correlated materials whose pair coupling potentials, if present, are produced without 
intervening phonons at least in a fundamental way [1-10]. An open question is whether 
non-retarded potentials can explain these non-phononic superconductivities just considering 
the Bardeen-Cooper-Schrieffer (BCS) scheme and introducing van Hove singularities in the 
density of states (DOS) near to EF [8-10], OT whether it is necessary to consider dynamic 
potentials in order to reconcile theory to experiments. The previous analysis [7,11,12] leads 
us to think that strong-coupling equations are most appropriate in both superconducting 
cuprates and heavy fermions. The main point is to decide what kind of pair potential and 
what shape of the DOS in the vicinity of EF should be included into the strong-coupling 
superconductivity equations. One possibility is to use fermion-fermion interactions from the 
random-phase approximation (RPA) plus the electron-hole ladder approximation (EHLA), and 
a DOS of the normal state of the strongly correlated materials which can be fitted by means 
of two Lorentzian curves, one each side of Ep, split by an energy 7.A and of widths A, which 
characterizes the electronic structure of these materials. In the case of the heavy-fermion 
systems the widths are much smaller than those of the d materials. Our purposes in this 
paper are (i) to consider an effective interaction similar to that considered in some recent 
literature [4,13], including a bare polarization which we have used in several electronic 
structure calculations [14,15] and that has given reasonable agreement with experimental 
results in other strongly correlated systems and (ii) to include this effective interaction in 
Eliashberg-like equations, for different values of the parameters of their electronic structures. 

We start from a first-order approximation of the finite-temperature self-energies in 
the superconducting state corresponding to fermions and pairs 1161 without considering 
vertex effects. In 1985 Sham [17] analysed these vertex effects in some plasmon-mediated 
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superconductivities and established that they can have quantitative influence. However, 
according to recent literature [18], these vertex effects can have importance in the cases of 
Hubbard systems with smaller Coulomb correlation energies and/or larger bandwidths than 
those considered in this paper. These 'normal' and 'pairing' self-energies can be written as 

where Vet is the effective pair interaction which will be commented on below and F and 
G correspond to the dressed correlation functions of the swong-coupling superconductivity, 
their expressions being 

where W(p) is the self-energy for coupled pairs, and Z(p) is defined from the 'normal' 
self-energy by 

(5 )  
where ( p )  = @, ifn),  and Ssi,,,(p) is the symmetric part of the self-energy for fermions, 
S ( p ) .  A point with sufficient consensus is that in the strong-coupling limits, the Eliashberg 
equations applied to systems with short-ranged interactions can be treated considering the 
polarization and the effective interaction without k-dependence [l-3,14,17], especially 
when one attempts to analyse the evolution of the W-function versus T, and the evolution 
of T, with the band parameters, within the sirong-coupling scheme and an s-wave character 
for the superconducting gap. In high-Tc superconductors there is, at the present time, a 
strong controversy [19,20] about whether this orbital character is s or d. The d-wave 
treatment requires the introduction of k-dependence in both the polarization and the pair 
potential. However, our study is addressed toward the strongly correlated systems in general, 
and our aim for this work is to analyse the possibility of an isotropic superconducting gap. 
Therefore, we determine the effective interaction V,r(iq.) considering polarization functions 
averaged with respect to the q momenta of the first Brillouin zone [2,3]. We consider the 
bare polarization function used in previous papers [ 141 

S(P)  = ssim(P) + ip. [ 1 - z(P)] 

where n, is the ocupation of the 1 symmetry of the strongly correlated orbital, and 
f i ~  =  AI - i&), 2At and AL being the splitting and width of the two Lorentzian curves of 
the DOS both sides of EF (for more information about these parameters and the polarization 

Obviously, the ingredients of the model described in this paper are only compatible 
with the scenario proposed by the Hubbard Hamiltonian, which is clearly accepted both 
in heavy-fermion and high-T, superconductors (see for instance [2-7,13,21]. This is an 
unquestionable assertion in the heavy-fermion systems, but it could be more doubtful 
in high-T, superconductors, particularly if one considers that the pairing occurs between 
holes belonging to oxygen atoms. However, there is a tendency to think that even the p 
holes of oxygen atoms can be treated within the Hubbard Hamiltonian scheme, since the 

x ,  see L141). 
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Coulomb correlation energy for these p states is estimated between 4 and 8 eV [21]. In the 
strongly correlated superconductors the occupation ratio of the strongly correlated orbital 
has a large influence on the coupling, the existence of superconductivity, and its transition 
temperature. The RPA series in the effective interaction is dominant in systems with a 
suficiently large number of interacting particles and the electron-hole ladder diagrams can 
produce significative effects for the cases with a small number of particles (or holes). Both 
series are complementary and non-redundant (except their first term), and therefore the 
effective interaction obtained as the sum of these two (RPA plus EHLA) effective interactions 
can be equally valid for any value of the occupation ratio of the strongly correlated orbital. 

Considering the response function (6). the RPA and the EHLA effective interactions can 
be written as 

vRpA(w)  = u [ 1  -ux(w) ] - '  
VEHM(W) = [ I +  UX(O)I-' 

and the sum of both effective interactions can be expressed by means of the following 
general form: 

where fX(o) are functions without poles in the complex plane. When these functions are 
constanr they can be understood as the strengths of the k-oscillators which correspond to the 
coupling of the k intermediating equivalent bosons whose characteristic is the corresponding 
pole Qk. Expressions for both fX and Qk can be deduced using an equivalent formulation 
given in [14], and depend on the number of active 1-symmetries as well as on their band 
parameters. In this paper we consider a simplified case of effective interaction that can 
be illustrative, which is to consider the RPA plus the electron-hole ladder approximation 
[S, 13,141 with a bare polarization (6) and a single orbital symmetry. Then, the resulting 
effective interaction can be written as 

where 
Q2 - 2 I - B + 4Un(l-  n ) p  
Q; = 8' - 4Un(l-  n ) p  

with p = 2(2.-ih), and 2). (A) stands for the splitting (width) of the two Lorentzian curves 
corresponding to the only strongly correlated orbital considered in this case. In addition, 
in the calculation carried out in this paper 2. is less than 2Un(l - R )  (i.e. we consider a 
not too wide band arising from the strongly correlated orbital), and in these conditions the 
term corresponding to the second pole (a,) of (8) has a negligible influence on the effective 
interaction within the energy interval where it is attractive. Then, for the sake of simplicity 
in the calculation, we have considered as V & J )  a function of the type (7) with only one 
pole 0 considered as input parameter and with a strength f (w)  = Q: - ,9'. 

In order to solve the self-energy equations, we consider the Lehmann representation of 
the correlation functions F and G 
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After straightforward manipulations of (1) and (2),  we obtain in the real frequency axis 

where K ( w .  U’) is an intermediate function which contains the residues of the poles of Ver, 
G and F that appear when evaluating the iq. sum. This function takes the form 

where s2, and fi(nk) are the plasmon poles and strengths, respectively, arising from the 
oscillators which compose the effective interaction Ve&). The DOS N ( x )  stands for the 
quasiparticles (fermions) which constitute the pair. In order to perform the calculation of 
these Eliashberg equations, we also approximate this DOS to two Lorentzians (similar to 
that considered in [14]), and we solve these equations in the band-parameter space in order 
to determine the region where superconductivity is possible. Looking at the DOS of the f 
andlor d electrons of the symmetries located at EF in the strongly correlated systems [ I j ] .  
one can accept the validity of this approximation. On the other hand, we do not consider 
a constant DOS, as in standard BCS theory, because the energy interval in which the W ( w )  
and Z(w) functions have large variations is of some eV and in this interval the DOS of the 
strongly correlated systems can present large variations. In this point the analysis is different 
from that made in standard strong-coupling superconductors where N ( x )  is considered as a 
constant, since in our case the above-mentioned energy interval can even become one order 
larger than that of the phonon-mediated superconductors. 

Equations (13) and (14) are solved by means of a self-consistent process, considering 
for the first iteration the expressions for F and G of the BCS theory for the weak-coupling 
model, i.e. with W(w)  = Ao for 101 < 00 and W ( w )  = 0 otherwise, and Z(w) = 1; for 
successive iterations, we consider W ( w )  and Z(w) of the former iteration. This iterative 
process is carefully treated to obtain convergence. The final result of A(w) = W(w)/Z(w) 
converges either to a constant function A(w) + 0 or to a function whose typical shape 
can be seen in figure 1. In the former case, one should interpret that for these values of 
the electronic structure parameters, superconductivity is not possible. In the cases in which 
superconductivity is present (see figure 1). the curves of A(w) have three characteristic 
features: (i) A(@) is an approximately even function with respect to w; (ii) in a frequency 
interval -WO c w < W. Re A(@) is positive, for IwI > 00. Re A(w)  is negative, and for 
101 > 0, tends asymptotically to a small negative and constant value; (iii) when increasing 
the temperature, ReA(o)  keeps its shape but decreases for all w values. Obviously, T, is 
defined as the temperature for which Re A(w) tends to zero for all w. Figure 2 shows the 
evolution of the DOS of the superconducting state with the temperature, which corresponds 
to the evolution of the gap A(w) of figure 1: the decrease of the gap with the temperature 
up to T = Tc can also be seen in the density of quasiparticles represented in figure 2. 
The features displayed in figures 1 and 2 appear in all strong-coupling superconductors, 
although in our calculation the tunnelling (optical) superconducting gap defined by the 
condition At = A(w = 0) (w = A(w)) can be one order larger than that of the standard 
superconductors if one conveniently chooses the band parameters, above all U ,  A, and h. 

In figure 3, we give the regions on the A,  A space where coupling and superconductivity 
are possible for different values of 52. maintaining U and n fixed. These regions are smaller 
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Figure 1. Superconductivity gap A(o) versus o for different temperahlres 
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Figure Z Reduced density of states of the superconducting state. N ( 0 )  stands for the DOS of 
the non-superconducting state. 

for larger values of the plasmon pole Q, and in the limit we obtain a value of 0 for which 
the superconducting region is reduced to only one point. If one considers the temporal 
Fourier bansformation of (7). the real part of the plasmon pole $2 gives the frequency of 
the resulting oscillating potential. In the cases with only one pole, r / R e Q  will be the 
time interval in which the binding energy of the pair is different from zero, since during 
this time the potential is attractive. Therefore, the zone of the band parameters in which 
superconductivity is possible is more restricted (see figure 3) for increasing values of Q and 
therefore for decreasing values of the periods in which the effective interaction is attractive. 

The systematics for determining the bansition temperature can be performed in a similar 
way to that given by McMillan [ZZ], by considering in the integrand of (13) and (14) that 
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Figure 3. The zones of the drawing with circles are lhe regions of lhe band parameter space (A 
and A are defined in the text) where superconductivity is possible. These regions m determined 
for different values of the oscillator frequency R (see (7)). (a )  Re S2 = 0.50 eV, (b)  Re S2 = 0.85 
eV. (c) Re R = 1.25 eV. (d )  Re R = 1.5 eV. 

W ( d )  << o'Z(o') for all o' and thus, for T -+ T,, 
W 

W ( w )  = A(@, w')W(o')dw' (16) 

(17) A(o, U')  = K ( w ,  U') Im 

S(o) = - K(o,w')do'Im/ L 
N(x) L m .Lm (0' + is)2z(wq2 - xz 

W 

N ( x )  dx. (18) 
w 

-m (U'+ i8)Z(o') - x 

Equation (16) is clearly an eigenvalue equation, where U-' is the eigenvalue (we have to 
remark that A(o. 0') can be written as A(o,  0') = U&@, U')). W ( o )  is in this equation 
the eigenvector, of infinite dimension. The value of W ( w )  for T + Tc tends to zero for 
all o. However, this equation will not be a null identity because if W ( o )  is an eigenvector 
for a given eigenvalue U-', then any proportional vector ruW(o) is also an eigenvector 
for the same U-' value. We have therefore solved (16) self-consistently, fixing a Tc and 
determining the U value for which there is aconvergent result of A(@). This calculation (see 
figure 4) allows us to give U = U(T,, a, A, A, n), and therefore T, = T&', a, A, A, a). 

In figure 4 we show the evolution of T, versus U for different values of the width A 
of the Lorentzian Dos , using (16) and (17). The following points can be remarked: (i) for 
a given A, a minimum energy U is required to obtain superconductivity, (ii) for a given 
value of U, T, increases for increasing values of A, and, therefore, for decreasing values 
of the DOS at EF.  This is physically meaningful, since superconductivity is a collective 
phenomenon, and the population of fermions near EF determines the strength of the pair 
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Figure 4. Evolution of Z versus the energy U for different values of the A parameter. 

potential for producing superconductivity. The results of figure 4 lead us to think that for 
U values between 9 and 12 eV, not far from estimated values for some strongly correlated 
systems, and reasonable band parameters for this type of material, Tc can reach about 90 K. 
However, it is necessary to remark that, in this theory, Te is quite sensitive (see figures 3 and 
4) to changes of the energy U and the other band parameters (A, A, etc). In heavy-fermion 
systems, the DOS near EF can be given by the Lorentzian curves with narrower widths and 
splitting between resonances at both sides of EF, and therefore the characteristic transition 
temperatures are much lower. 

We can conclude that our analysis indicates a way to solve the superconducting state 
within strongly correlated systems, and that high-% and heavy-fermion superconductivities 
can be considered as two different limits of the strongly correlated electron 
superconductivity, which could be explained from the strong-coupling equations, 
considering appropriate screenings of only one short-ranged repulsive interaction. This 
screening function should be determined by including in each case the corresponding 
characteristics of its electronic structure. 
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